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Symmetry based analysis of the Kohn anomaly and electron-phonon interaction
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Symmetry based analysis of the electron-phonon coupling in graphene and carbon nanotubes is performed
and Kohn anomalies, their Brillouin-zone positions together with the complete set of good quantum numbers
are predicted. Interestingly, graphene dynamical representation is found to contain only a small portion of quite
a large set of inequivalent irreducible representations of the relevant full symmetry group. Besides, vanishing
of the electron-phonon interaction for majority of the normal displacements is also shown to be a consequence
of the symmetry. The results are further numerically confirmed within full and tight-binding density-functional
calculations and force constants model and enhanced coupling to the Fermi level electrons of the Dirac point
A, mode with respect to the I" point E,, mode is confirmed. Finally, energy dispersion of the kink phonon
spectrum is analytically evaluated and compared to the classical phonon spectrum.
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Graphene!-? being an exciting and unusual material in
many respects and having prospects of a new technological
marvel attracts tremendous attention of quite a wide spec-
trum of researches. Kohn anomaly? pertains to the most im-
portant fundamental topics of graphene physics due to its
relevance for Raman spectroscopy which has an essential
role in investigating this, in many ways unique two-
dimensional (2D) surface being thus easily accessible to Ra-
man scattering measurements.* Namely, electron-phonon
coupling is particularly interesting in graphitic materials due
to their specific pointlike Fermi surface. In graphene it is
electron-phonon coupling which strongly softens phonon fre-
quencies giving rise to Kohn anomalies which occur for
phonons having wave number ¢ such that there are two elec-
tronic states k; and k,=k;+¢g at the Fermi surface. In the
phononic spectrum of a metal a Kohn anomaly is manifested
as discontinuity in the derivative of the dispersion relation
that occurs at certain points of the Brillouin zone (BZ), pro-
duced by the abrupt change in the screening of lattice vibra-
tions by conduction electrons. In graphene, the electronic
gap vanishes only at the two equivalent K Brillouin-zone
points (the so called Dirac points because of the linear dis-
persion corresponding to the massless Dirac fermions) which
are connected by the vector K. Thus, Kohn anomalies can
occur for central, I' point phonons and ¢g=K, Dirac point
phonons. Also, in metallic single-wall carbon nanotubes the
Fermi surface consists of only two points and Kohn anoma-
lies occur only for phonons with zero wave vector or with
the wave vector g connecting these two Fermi-surface points.
Due to their quasi-one-dimensionality the armchair carbon
nanotubes are expected to exhibit stronger Kohn anomaly
than graphene.>%

In this Brief Report we use full symmetry of graphene’
and carbon nanotubes® in order to discuss electron-phonon
interaction and to point out the direct consequences of sym-
metry, completely independent on the model of dynamics
used. The symmetry-based results are further numerically
confirmed within full and tight-binding density-functional
calculations and force constants model.
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Graphene, one-atom-thick allotrope of carbon with a hon-
eycomb structure made out of hexagons, is a two-
dimensional crystal with diperiodic symmetry® group DG80
=TDg,, (the symmetry generators are shown in Fig. 1). For
considerations restricted to the in-plane modes, horizontal
mirror symmetry can be ignored and normal subgroup Cyg, of
the full symmetry group Dy, can be used'?). Note that DG80
is not a subgroup of the nonsymmorphic space group
P65/mmc of graphite.!' Graphene is a single orbit system,
generated by the subgroup DG3=TC,, with the stabilizer
isomorphic to D3;,. Despite this large stabilizer with twelve
elements, graphene is not invariant under any Euclidean su-
pergroup. However, its dynamical representation D" con-
tains only a small portion of quite a large set of inequivalent
irreducible representations of DGS8O0. It is symmetry which
also predicts vanishing of the electron-phonon interaction for
many normal displacements.

Decomposition of the dynamical representation onto the
irreducible components’ is

FIG. 1. Right panel: Brillouin zone and irreducible domain of
graphene. Notation of the high symmetry lines and points, as well
as of the interior domain, are introduced. Left panel: graphene sym-
metry generators: 2D translations, rotation for /3, horizontal and
vertical mirror reflections.
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where the labels of the components ,’jX}HZ follow notation of
the irreducible domain (ID) of graphene shown in Fig. 1 and
indicate the full set of conserved quantum numbers: k is
wave vector, v and h are vertical and horizontal mirror pari-
ties, taking values =1 (even/odd) and O (not defined), while
m is angular quantum number. Dimensions of the irreducible
representations are as follows: 12-dimensional G from the
interior of the graphene ID; six-dimensional A, A and X
(special lines of the ID), four-dimensional K, (high symme-
try point K), three-dimensional M (high symmetry point M),
two-dimensional K, I';, and I', (high symmetry points K
and I'), and one-dimensional I'; and I';.

The electronic states transform according to the following
representation:
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k k k
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k

+ ‘II‘g, (2)

where k takes values from the interior of the ID of the Bril-
louin zone. It is primary the symmetry which substantially
reduces the electron-phonon coupling. Namely, an electronic
state transforming according to an irreducible representation
D™ can couple only to phonons transforming according to
the irreducible representations contained in symmetrized
square of D'®). Note that this condition when applied to the
Fermi point states directly selects the Kohn modes. It turns
out that only three, (out of six) optical modes at the
Brillouin-zone center I' and at Dirac point K are symmetry
allowed to couple to Fermi electrons, i.e., only three optical
phonons: '}, 'K, and °K? (Eyg: Ajg, and EY in the point
group notation) can cause the Kohn anomaly. Remarkably,
the remaining three phonons ~'T 3 _IKS, and OKB (i.e., B,
EOB, and E7) do not couple not only to Fermi but to any
electrons.

The full picture of the electron-phonon interaction is sche-
matically presented in Fig. 2 where electronic states and nor-
mal modes of vibration are listed according to their quantum
numbers. The bold lines connect coupled electronic states
and normal modes. The dashed lines indicate that the cou-
pling between the two sets of the electrons and phonons is
only for some values of the wave vector. For instance, the
uppermost dashed line on the left side of Fig. 2 is meant to
show that some (but not all) normal modes having wave
vector which belongs to A line, zero angular momentum,
even vertical and odd horizontal mirror parity are coupled to
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FIG. 2. Electron-phonon interaction in graphene. Electrons and
phonons are assigned by the complete set of quantum numbers: k
(takes the values allowed by the position BZ within Brillouin zone)
and (m,v,h) give I‘iXﬁ,. F is frequency number. Coupled states and
modes are connected by bold lines; the dashed lines indicate cou-
pling for only some k values (not all allowed by BZ).

some (but not to all) electrons having wave vector from ID
interior, zero angular momentum and odd horizontal mirror
parity.

Quite evidently, the vast majority of the graphene normal
modes are not coupled to any electrons: all A phonons, zero
angular momentum phonons from the interior of ID with odd
horizontal mirror parity, also zero angular momenta phonons
with even horizontal mirror parity and wave vector lying on
the special line %, likewise the acoustic I" point phonons E}
and A; and optical phonons _lMg, IM{), and _IMT, together
with the already mentioned optical, but not Kohn, I'- and
K-point phonons Bs,, Eg, and E|. Such a number of the
vibronically uncoupled nonsymmetric modes contribute to
the stability of the honeycomb lattice.

Phonon dispersions have been calculated within symme-
try based force constants approach;'?> however, as frequency
of the irreducible representations of the I'-point and K-point
modes in the dynamical representation, (1), is one, the ge-
ometry of their displacements is fully determined by the
symmetry, thus being totally independent of the dynamical
model (unlike the corresponding frequencies). Further, for
these modes the electronic band structure is calculated as a
function of elongation by ab initio and tight-binding density-
functional (DFTB) method.'® This enables to derive depen-
dence of the electronic total energy and the band gap on the
elongation. It is remarkable that total energy in the ab initio
approach (which includes only translational periodicity of
the system) has usual parabolic behavior while full symme-
try based DFTB approach leads to the potential which is
nicely approximated by the kinklike intersection of two pa-
rabolas (M, w, and a are their parameters)

V(x) = %Ma)z(x + q)? (3)

(bolded curve in Fig. 3, upper panel). Note that disagree-
ments stemming from these two methods are hardly verifi-
able experimentally. Namely, the spectrum corresponding to
the potential V is
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FIG. 3. Spectrum of the kink phonons. Upper panel: potential
approximated by intersection of two harmonic potentials and
ground energy, and overtones of kink phonons. Lower panel: kink
phonon (black) energy function E,, Eq. (4), and differences be-
tween adjacent kink-phonon energy levels in comparison to the or-
dinary phonons (gray).
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As shown in Fig. 3, lower panel, it is almost equidistant, and
the deviations of “kink phonons” from the usual (parabolic)
ones are measurable for the lowest energy states only.

Assigned by the complete set of quantum numbers, the
electronic bands are given in Fig. 4. The phonon dispersions
exhibit two kinks, for phonons I'(2,0,1) and K(0,1,1)
which are symmetry allowed to couple to the Fermi elec-
trons. These normal displacements are illustrated in Fig. 5.
Their frequencies are 1577 cm™' and 1294 c¢cm™, respec-
tively.

The electron-phonon coupling has been further analyzed
within  the electron-phonon  deformation  potential
approximation.'* Namely, the electron-phonon matrix ele-
ment M, is well approximated by the following formula:
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FIG. 4. Graphene electronic band structure along the symmetry
directions assigned by the complete set of quantum numbers.

dV(u)
du

Mel—ph = <\Pe| |q,e> > (5)

where WV, is the electronic wave function, V(u) is the effec-
tive one-electron potential, and « is the phonon elongation.

We calculate Fermi-level dependence on the all six I and
K optical phonons displacements as a function of elongation.
As can be seen from Fig. 6 only the Kohn modes have sub-
stantial impact on the Fermi level, opening a finite gap. Also,
the numerical simulations show that the substantial change in
the electronic energy stems only from the coupling to the two
Kohn phonons and that it is more pronounced for the Dirac
point Kohn mode.

Symmetry of the armchair nanotube (n,n) is described by
the line group® L2n,/ mcm:T;nDnh. The Fermi point k. is at
the crossing of the bands ,E' and ,E,' (corresponding states
have angular quantum number m=n), which is close to
21r/3a. Symmetrized square of the Fermi state irreducible
representations decompose onto the totally symmetric repre-
sentation A and double degenerate representation 2kFE;l1 (of
course, instead of 2kg its equivalent point from the Brillouin
zone is taken). These representations pertain to the dynami-
cal representation of the tube with the frequency numbers
f4=2 (radial breathing and high-energy mode, denoted by
RB and HE) and fz=3 (since E is double degenerate, this
gives three pairs of modes denoted by E|, E,, and Ej), re-
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FIG. 5. Kohn normal mode displacements E,, and Aj,.
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FIG. 6. Gap and total energy (inset) as functions of the elonga-
tion of the optical phonons at I' and K. Evidently, the substantial
gap opening comes from the Kohn modes displacements only.

spectively. As shown in inset of Fig. 7, total coupling to
electrons is much stronger for £ modes. However, the stron-
gest coupling to the Fermi level is for the high-energy mode,
causing substantial electronic band-gap opening; also, in ac-
cordance with the previous predictions,G’15 for the (5,5) tube
E; mode shows the same effect.

In summary, symmetry predicts the Brillouin-zone posi-
tion of the Kohn phonons and their spatial displacements,
assigning them by the full set of conserved quantum num-
bers. Apart form the acoustic phonons most of the K- and
I"-point optical phonons are not coupled to any electrons,
which is shown to be the characteristic of graphene structure.
All these findings are completely model independent.

Numerical symmetry based analysis of the electron-
phonon coupling shows that Kohn anomaly in armchair car-
bon nanotubes is stronger than in graphene and more pro-
nounced in narrow nanotubes. Deformation potential matrix
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FIG. 7. Gap and total energy (inset) as functions of the elonga-
tion of the optical phonons at I' and 2kg of (5,5) (with kg
=41/67a) and (20,20) (kg=507r/73a) nanotubes.

element estimations show the influence of the Kohn modes
vibrations on the Fermi energy oscillations, causing thus the
electronic band-gap opening. If tunable, these band-gap os-
cillations could open a room for electronic applications.

In epitaxial graphene Kohn anomaly has been identified
as the main scattering channel responsible for the high-
resolution  angle-resolved photoemission spectroscopy
kink.'0 Here calculated frequencies of the Kohn modes agree
very well with these spectroscopy measurements. Also, the
enhanced coupling to the Fermi level electrons of the totally
symmetric Dirac point Kohn mode with respect to the double
degenerate I'-point Kohn mode is confirmed.

Finally, energy dispersion of the kink-phonon spectrum is
analytically evaluated and found to be similar to the classical
phonon spectrum.
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